193 research outputs found

    Pyrolysis-catalytic reforming/gasification of waste tires for production of carbon nanotubes and hydrogen

    Get PDF
    The production of high-value carbon nanotubes and hydrogen from the two-stage pyrolysis catalytic-steam reforming/gasification of waste tires have been investigated. The catalysts used were Co/Al₂ O₃ , Cu/Al₂ O₃ , Fe/Al₂ O₃ and Ni/Al₂ O₃ . The pyrolysis temperature and catalyst temperature were 600 °C and 800 °C, respectively. The fresh catalysts were analysed by temperature programmed reduction and X-ray diffraction. The product gases, including hydrogen were analysed by gas chromatography and the carbon nanotubes characterized by scanning and transmission electron microscopy and Raman spectrometry. The results showed that the Ni/Al₂ O₃ catalyst produced high quality multiwalled carbon nanotubes along with the highest H₂ yield of 18.14 mmol g⁻¹ tire, compared with the other catalysts, while the Co/Al₂ O₃ and Cu/Al₂ O₃ catalysts produced lower hydrogen yield, which is suggested to be associated with the formation of amorphous type carbons on the surface of the Co/Al₂ O₃ and Cu/Al₂ O₃ catalyst

    Hydrogen from waste plastics by way of pyrolysis-gasification

    Get PDF
    A screw kiln continuous reaction system was used to investigate the production of hydrogen from a representative waste plastic (polypropylene). The reactor system consisted of two stages, with pyrolysis of the plastic in the firststage screw kiln, followed by catalytic gasification of the product pyrolysis gases in the second stage. Two catalysts (a laboratory prepared Ni-Mg-Al catalyst and a commercial nickel catalyst) were used and the process conditions of gasification temperature and water injection rate were investigated. The results showed that the introduction of catalyst into the gasification stage dramatically increased the hydrogen production. The gas and hydrogen production and amount of reacted water per hour were increased with the increase of the gasification temperature from 600 to 900°C for both the Ni-Mg-Al and the commercial nickel catalysts. The rate of water injection was also shown to be critical for hydrogen production. The maximum hydrogen produced was 52% of the maximum theoretical hydrogen available in the polypropylene, representing 22̇38 g of hydrogen per 100 g polypropylene, obtained with the Ni-Mg- Al catalyst, at 800°C gasification temperature and with 28̇46 g/h water injection rate

    Catalytic steam reforming of volatiles released via pyrolysis of wood sawdust for hydrogen-rich gas production on Fe–Zn/Al2O3 nanocatalysts

    Get PDF
    Thermo-chemical processing of biomass is a promising alternative to produce renewable hydrogen as a clean fuel or renewable syngas for a sustainable chemical industry. However, the fast deactivation of catalysts due to coke formation and sintering limits the application of catalytic thermo-chemical processing in the emerging bio-refining industry. In this research, Fe-Zn/Al2O3 nanocatalysts have been prepared for the production of hydrogen through pyrolysis catalytic reforming of wood sawdust. Through characterization, it was found that Fe and Zn were well distributed on the surface with a narrow particle size. During the reactions, the yield of hydrogen increased with the increase of Zn content, as Zn is an efficient metal promoter for enhancing the performance of the Fe active site in the reaction. The 20% Fe/Al2O3 catalyst with Zn/Al ratio of 1:1 showed the best performance in the process in relation to the hydrogen production and resistance to coke formation on the surface of the reacted catalyst. All the catalysts showed ultra-high stability during the process and nearly no sintering were observed on the used catalysts. Therefore, the nanocatalysts prepared from natural-abundant and low-cost metals in this work have promising catalytic properties (high metal dispersion and stability) to produce H2-rich syngas with optimal H2/CO ratio from the thermo-chemical process of biomass

    Promoting hydrogen production and minimizing catalyst deactivation from the pyrolysis-catalytic steam reforming of biomass on nanosized NiZnAlOx catalysts

    Get PDF
    Hydrogen production from the thermochemical conversion of biomass was carried out with nano-sized NiZnAlOx catalysts using a two-stage fixed bed reactor system. The gases derived from the pyrolysis of wood sawdust in the first stage were catalytically steam reformed in the second stage. The NiZnAlOx catalysts were synthesized by a co-precipitation method with different Ni molar fractions (5, 10, 15, 25 and 35%) and a constant Zn:Al molar ratio of 1:4. The catalysts were characterized by a wide range of techniques, including N2 adsorption, SEM, XRD, TEM and temperature-programmed oxidation (TPO) and reduction (TPR). Fine metal particles of size around 10–11 nm were obtained and the catalysts had high stability characteristics, which improved the dispersion of active centers during the reaction and promoted the performance of the catalysts. The yield of gas was increased from 49.3 to 74.8 wt.%, and the volumetric concentration of hydrogen was increased from 34.7 to 48.1 vol.%, when the amount of Ni loading was increased from 5 to 35%. Meanwhile, the CH4 fraction decreased from 10.2 to 0.2 vol.% and the C2–C4 fraction was reduced from 2.4 vol.% to 0.0 vol.%. During the reaction, the crystal size of all catalysts was successfully maintained at around 10–11 nm with lowered catalyst coke formation, (particularly for the 35NiZn4Al catalyst where negligible coke was found) and additionally no obvious catalyst sintering was detected. The efficient production of hydrogen from the thermochemical conversion of renewable biomass indicates that it is a promising sustainable route to generate hydrogen from biomass using the NiZnAl metal oxide catalyst prepared in this work via a two-stage reaction system

    Thermal Chemical Conversion of High-Density Polyethylene for the Production of Valuable Carbon Nanotubes Using Ni/AAO Membrane Catalyst

    Get PDF
    © 2017 American Chemical Society. Thermal chemical conversion of waste plastics for syngas production is a promising alternative method for the management of waste plastics. However, one of the challenges of facilitating the deployment of this technology is the low economic benefit of waste-plastic recycling. By producing a high-value carbon nanotubes (CNTs) byproduct, an interesting alternative solution is provided. To further enhance the quality of CNTs produced from catalytic thermal chemical conversion of waste plastics, a template-based catalyst (Ni/anodic aluminum oxide, AAO) is proposed in this work. In addition, reaction temperature, Ni content and water injection were studied for their influences on the formation of CNTs on Ni/AAO using a two-stage fixed bed reactor. Various analytical methods, e.g., scanning electronic microscopy (SEM) and X-ray diffraction (XRD), were used to evaluate the performance of catalyst in relation to the production of CNTs. The results show that a higher loading of Ni on AAO resulted in the formation of metal particles with various sizes, thus leading to the production of nonuniform CNTs. In addition, an optimal catalytic temperature of 700 °C is suggested for the production of CNTs. Because the catalyst might not be activated at 600 °C, which produced a low yield of CNTs. However, a reaction temperature of 800 °C resulted in a low yield of CNTs. Carbon deposition decreased with an increase of steam injection, but the quality of CNTs formation in relation to the uniform of CNTs seemed to be improved in the presence of steam

    Proteomic analysis of glucohexaose induced resistance to downy mildew in Cucumis sativus

    Get PDF
    Glucohexaose, as one of synthetic oligosaccharides, induces the resistance response to protect plants from pathogen infection by inducing the systemic acquired resistance-like (SAR-like) response. To study the molecular mechanism of glucohexaose induced resistance, we investigate the physiological, biochemical and proteomic changes after glucohexaose treatment. The results shows cucumber plants had the highest protection level of 66.79% 48 h after the third times of 10 μg mLglucohexaose treatment. Significant increases in chlorophyll, photo synthetic rate, soluble sugar, leave dry weight and HO were observed after glucohexaose treatment. Eighteen up-regulated proteins were identified by MALDI-TOF/TOF in glucohexaose-treated plants, predicted to be involved in photosynthesis, photorespiration, oxidative burst, transcriptional regulation, signal transduction and pathogen defense processes. The identification of up-regulated proteins involved in photo synthetic processes is a significant finding which suggests that a boost in metabolites is required for repartition of resources towards defense mechanisms. The proteins which responded to glucohexaose also included those associated with oxidative burst response, such as APX and isocitrate dehydrogenase. More comprehensive studies about the link between the molecular mechanisms regulated by ROS mediated photosynthesis and cucumber induced resistance by glucohexaose, are necessary in the future to broaden our understanding of induced resistance in plants

    Pyrolysis-catalysis of waste plastic using a nickel-stainless steel mesh catalyst for high value carbon products.

    Get PDF
    A stainless steel mesh loaded with nickel catalyst was produced and used for the pyrolysis-catalysis of waste high density polyethylene with the aim of producing high value carbon products, including carbon nanotubes. The catalysis temperature and plastic to catalyst ratio were investigated to determine the influence on the formation of different types of carbon deposited on the nickel-stainless steel mesh catalyst. Increasing temperature from 700 to 900 °C resulted in an increase in the carbon deposited on the nickel loaded stainless steel mesh catalyst from 32.5 wt.% to 38.0 wt.%. The increase of sample to catalyst ratio reduced the amount of carbon deposited on the mesh catalyst in terms of g carbon g(-1) plastic. The carbons were found to be largely composed of filamentous carbons, with negligible disordered (amorphous) carbons. Transmission electron microscopy analysis of the filamentous carbons revealed them to be composed of a large proportion (estimated at ∼40%) multi-walled carbon nanotubes. The optimum process conditions for carbon nanotube production, in terms of yield and graphitic nature, determined by Raman spectroscopy, was catalysis temperature of 800 °C and plastic to catalyst ratio of 1:2 where a mass of 334 mg of filamentous/multi-walled carbon nanotubes g(-1) plastic was produced

    Simultaneous removal of NO and Hg⁰ using Fe and Co co-doped Mn-Ce/TiO₂ catalysts

    Get PDF
    Fe and Co co-doped Mn-Ce/TiO2 (MCT) catalysts were investigated for the simultaneous removal of nitric oxide (NO) and elemental mercury (Hg0) at reaction temperature lower than 200 °C. The catalysts were characterized by Brunauer–Emmett–Teller (BET), temperature program reduction (TPR), scanning electron microscope (SEM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) analysis. The experimental results showed that the co-doped 2Fe4Co-MCT catalyst exhibited better performance for the simultaneous removal of NO and Hg0 compared to Fe or Co doped catalysts. This could be due to higher BET surface area and better redox property of 2Fe4Co-MCT catalyst. In addition, we propose that chemisorbed O2 played a dominant role in selective catalytic reduction (SCR) of NO while lattice O2 played a key role in Hg0 oxidation. The results also indicate that the introduction of Fe species enhanced the activity of SCR, whereas the introduction of Co species enhanced the oxidation of Hg0. The synergistic effect of Fe and Co species in the 2Fe4Co-MCT catalyst are also suggested to be an important mechanism for simultaneously removing NO and Hg0

    CO2 capture over steam and KOH activated biochar: Effect of relative humidity

    Get PDF
    Carbon dioxide (CO2) capture is critical for emission reduction. Biochar is a promising adsorbent for CO2 capture. In this work, the effect of relative humidity and biochar activation with steam or KOH treatment on CO2 capture was investigated. The results demonstrate that the biochar sample activated by KOH has a high CO2 capture capacity (50.73 mg g−1). In addition, the biochar after 1.0 h of steam treatment showed a carbon capture capacity of 38.84 mg g−1. The results also show that the capture ability of biochar decreased as CO2 concentration decreased from 100% to 15%. The relative humidity had a negative impact on CO2 capture over biochar. The CO2 capture capability of biochar materials treated by steam decreased by a range of 31.38%–62.89% as the relative humidity rose from 8.8% to 87.9%. Furthermore, the lifetime of biochar samples at various relative humidity shows that increased relative humidity had a negative impact on CO2 adsorption due to water molecules occupying active sites

    Structured ZSM-5/SiC foam catalysts for bio-oils upgrading

    Get PDF
    ZSM-5 zeolite coating supported on SiC foams was prepared by a precursor dispersion-secondary growth method and the resulting structured ZSM-5/SiC foam catalyst was used for the proof-of-concept study of catalytic bio-oils upgrading (i.e. deoxygenation of the model compounds of methanol and anisole) in reference to ZSM-5 catalyst pellets. A layer of ZSM-5 coating with inter-crystal porosity on SiC foams was produced by curing the zeolite precursor thermally at 80 °C. The use of SiC foam as the zeolite support significantly improved transport phenomena compared to the packed-bed using ZSM-5 pellets, explaining the comparatively good catalytic performance achieved by the structured ZSM-5/SiC foam catalyst. In comparison with the ZSM-5 pellets, the ZSM-5/SiC foam catalyst showed 100.0% methanol conversion (at the weight hourly space velocity, WHSV, of 8 h–1) and 100.0% anisole conversion (at WHSV =5 h−1) at the initial stage of the processes, while only about 3% were obtained for the ZSM-5 pellets, under the same conditions. Based on the comparative analysis of the characterisation data on the fresh and spent catalysts, the deactivation mechanisms of the ZSM-5/SiC and the ZSM-5 pellet catalysts were explained. The process intensification using SiC foam to support ZSM-5 improved the global gas-to-solid mass transfer notably, and hence mitigating the pore blocking due to the carbon deposition on the external surface of supported ZSM-5
    corecore